Technology

Smart bandwidth key to upcoming surge in wireless device connectivity

Wireless communication has been a key facilitator of most recent and pending technologies.  Smart bandwidth usage is a prerequisite if society is to benefit from the surge in wireless devices over the next few years.

Self driving cars, advanced robotics and a broader Internet of Things (IoT) are subject to imminent delivery whilst calls, texts, Uber and mobile device video streaming are already embedded in societal habits.

All are facilitated by wireless technology.  In the case of IoT, it’s estimated that 21 billion connected devices will be operational within the next year.

However, there is a likely problem.  Our airwaves are going to be overloaded as this wireless device use grows.  Radio spectrum has been carved up amongst the various use cases.  However, the holders of various radio spectrum allocations are not utilizing the resource efficiently.

Mobile spectrum assignments have doubled over the last decade and with that, there is a growing recognition of the need to make more spectrum available, providing for greater connectivity.

Rarely behind the curve, the Defense Advanced Research Projects Agency (DARPA) has recognized the problem and as a consequence, the agency has been running a competition to find a better way to allocate spectrum.

The Spectrum Collaboration Challenge (SCC) aims to provide for the exponential growth in wireless devices in terms of both military and civilian use.

Collaborative AI The Solution?

The finalists of the competition gathered at Mobile World Congress in Los Angeles last week.  The event host confirmed that “competitors packed 3.5 times more wireless signals into the spectrum than we’re capable of today”.

It’s early days as this solution is likely to need further testing but this was the first time that “we’ve seen AI enabled radios collaborating autonomously – unlocking the true potential of the RF spectrum”.

This was carried out using DARPA’s wireless emulation testbed – Colosseum.  Additional testing will be required in the wild before this approach emerges as a worthy candidate to resolve the spectrum allocation issue but the initial signs are encouraging.

A working group of the Networking and Information Technology Research & Development (NITRD) program also considered the use of AI for wireless spectrum allocation at a workshop held in New York in August.

The overarching view is that static spectrum allocation is inefficient whereas AI can enable dynamic allocation – making far greater use of the available spectrum.

In advance of the workshop, the National Science Foundation (NSF) underscored the importance of efficient wireless spectrum management as key “to maintain our Nation’s global leadership in 5G technologies and deployment”.

Telecoms industry approach

The Dynamic Spectrum Alliance (DSA) – a cross industry collaboration within the telecoms sector to address the issue – has been established.  It’s not just in terms of new technologies that spectrum allocation comes into play.

According to a DSA press release earlier this year, dynamic spectrum sharing will play a critical role in connecting millions of people in Africa to the internet.

Swedish multinational telecoms company, Ericsson has developed its own dynamic spectrum sharing (DSS) technology – facilitating a mobile operator in running 4G and 5G wireless communications on the same spectrum band.

At the turn of the millennium, Bluetooth emerged and caused mayhem due to interference with Wi-Fi routers.  Engineers ultimately overcame the difficulty.

If society is to benefit from all we’ve been promised in terms of the much vaunted arrival of IoT, engineers working on the broader radio spectrum will need to match that feat.

For now at least, the use of AI seems like a promising step forward in using the resource more efficiently, thus enabling a much more interconnected future.

Pat Rabbitte

Pat is a writer from the West of Ireland - currently living and working in Medellín, Colombia. He has always had an inquiring mind when it comes to new technology. His discovery of Bitcoin back in 2013 slowly led to a realisation of the implications of the underlying tech. As a consequence, Pat’s passion for blockchain technology has led him to focus his writing on the subject.

Recent Posts

10 Independent Writers Leading the Design Conversation in 2025

While major design houses and celebrities often steal the spotlight, it’s the independent voices behind…

3 days ago

Building trust across clouds: Expert insight on how AI cloud-native MFT platforms are empowering businesses (Brains Byte Back Podcast)

For modern, data-driven organizations, managing data effectively is an ongoing challenge.  (more…)

4 days ago

Securing the future of healthy code: “Make it simple, scalable & a no-brainer for teams of all sizes”

A dream is often born when things get tough and tedious. While DevSecOps is a…

4 days ago

G20 South Africa commits to advancing digital public infrastructure globally

DPI involves giving everybody electricity & internet, making them sign up for digital ID, and…

5 days ago

Nisum, Applied AI Consulting partner-up to turn the promise of AI into tangible results

Across industries, AI has been promised as the magic bullet, poised to solve different business…

6 days ago

WEF blog calls for an ‘International Cybercrime Coordination Authority’ to impose collective penalties on uncooperative nations

How long until online misinformation and disinformation are considered cybercrimes? perspective The World Economic Forum…

6 days ago